
● 1 ●
IIP Bulletin 2011 Vol.20

15 Handling of Software Patents and Trademarks in
Open Source Software Licenses（*）

Research Fellow: Masayuki Hatta

Open source software, such as Linux, can be freely used, modified, and re-distributed under an open
source license. Its use is becoming widespread in Japan. Software licenses are, in principle, based on a
copyright, but in recent years, active movements are taking place toward incorporating clauses concerning
patent retaliation and trademarks into them, thereby controlling industrial property rights other than
copyrights by using copyrights as leverage. In addition, open source communities, which have tended to
avoid software patents, are now aiming to utilize patents strategically by forming patent pools designed for
open source and working on open patent licenses, so as to clearly assure free development. Based on the
latest research trends and the hearing survey targeting specialists in this field, this study closely examines
and compares the details of patent and trademark clauses included in open source licenses, which differ
from license to license, and comprehensively reviews how those rights other than copyrights are treated in
the context of open source in actual cases, with the objective of finding out how the concept of open source
will affect the future software development.

Ⅰ Introduction

Software, in general, consists of programs
(algorithms) and data. Copyright protection shall
be given to both programs and data if they are
recognized as creative works in the legal sense.
This is currently a matter of common sense, but
at the beginning, software, and in particular, the
use thereof, was not assigned so much economic
value. In the 1970s, software was considered to
be of no value. However, in the 1980s, its value
was discovered, and people started to discuss the
appropriate system for protecting it. In the end, it
has come to be protected as a work under the
Copyright Act.

In the past two decades, not only software
but also creative works in general have been
found to have considerable economic value. We
should particularly note that software is a unique
type of property which can be protected by a
copyright, as well as by other rights of a
completely different nature, such as a patent right
and a trademark right. The issue of whether or
not software itself should be protected by a patent
was addressed in the U.S. Supreme Court
judgment in Diamond v. Diehr,1 and it is still
being discussed in Europe. There are deep-rooted
opposition movements against software patents.
It is difficult to understand that issue without

understanding the root of these movements. In
Europe, the anti-patent group and the pro-patent
group had a fierce debate over whether or not to
adopt the directive on the patentability of
software proposed by the European Commission.2
On July 6, 2005, the European Parliament
rejected the proposal by a substantial majority.

Under such circumstances, open source
software exists as software which is developed
basically for the purpose of licensing. It differs
from a general type of software in many aspects in
terms of the protection of rights.

This study aims to review how patents and
trademarks, in addition to copyrights, are treated
in open source software licenses, and to clarify
the ideal form of a license for open source
software.

Ⅱ What Does Open Source Mean?

Open source software, as used in this study,

means software which is opened under a software
license that complies with the criteria developed
by Open Source Initiatives3 under the title of the
Open Source Definition.4 In principle, anyone can
freely modify or re-distribute open source
software.

With GNU/Linux, an operating system that
has been remarkably diffused in recent years,

(*) This is an English translation of the summary of the report published under the Industrial Property Research
Promotion Project FY2010 entrusted by the Japan Patent Office. IIP is entirely responsible for any errors in
expression or description of the translation. When any ambiguity is found in the English translation, the original
Japanese text shall be prevailing.

● 2 ●
IIP Bulletin 2011 Vol.20

listed first, open source software is now rapidly
penetrating into our everyday life. Many home
appliances and mobile phone units use some sort
of open source software. In this respect, we have
become licensees without knowing it.

The term open source itself is said to have
first appeared in 1998,5 but the origin of the very
concept of making software legally available to
anyone to use freely by means of an open
copyright license goes back to the free software
movement that took place in the 1980s.

There are various types of software that are
called open source software. What is important is
that under a software license, anyone can use the
software freely. Software that cannot be used
“freely” is called proprietary software.

The definition of free software, developed by
Mr. Richard Stallman, the founder of the GNU
Project and the President of the Free Software
Foundation, is also widely used. To put it simply,
according to Mr. Stallman’s definition, open
source software is, in most cases, software that
anyone can use freely without charge.
Representative examples of this kind of software
include Linux, Mozilla Firefox (a web browser),
and Android, which was recently released by
Google as an operating system for mobile phone
units.

While carrying out this study, I got the
impression that the term open source is being
used in two different ways. In my eyes, open
source is attracting attention not only from the
legal aspects as described above, but also as a
development scheme. The specific example is
what is generally called a bazaar development
process, wherein, with no hierarchy or chain of
order, a number of people can freely participate in
the development of software. Such scheme is
often called open source. Open source as a legal
state seems to support open source as a
development scheme and serve to facilitate the
development process. I chose open source
software licenses as the main topic for this study
with the objective of finding out how it affects a
bazaar development process.

Actions are taking place toward applying a
concept, similar to open source as a development
scheme, for purposes other than software
development. A famous example is Creative
Commons, 6 advocated by Professor Lawrence
Lessig. The core concept of Creative Commons is
to make works such as books and other text
materials available so that anyone can use them,
with the goal of promoting the reuse and

secondary use of works as well as the creation of
innovation.

Recently, considerable attention is also being
paid to a new concept, open hardware. Along with
this new trend, for example, the Open Source
Hardware (OSHW) Statement of Principles and
Definition v1.07 is being established.

Another example of action under the
influence of the principle of open source is a
community activity called Peer-To-Patent,8 which
is designed to enable anyone to participate in the
process of examining the patentability of
inventions, which is usually conducted by patent
offices.

Ⅲ Earlier Studies on Open Source

The concept of open source influences

economics as well. Following the great success of
Linux and GNU/Linux, the views that open source
methodology would work, or would work at least
under certain conditions, spread widely. It is
natural that such views led to the attempt of
gaining some knowledge from this methodology.

Chesbrough (2006) states that open innovation,
which involves open source as a development
scheme and also legally open, is considerably
helpful in promoting innovation and it is
necessary to develop business models based on
this new concept. His view became very
influential. Others followed him and started to talk
about open innovation or open business models.

Katz & Allen (1982) discusses the Not
Invented Here (NIH) Syndrome, and to
breakthrough this way of thinking is another main
theme of this study. When launching an open
source project as a development scheme for open
innovation, we have to procure part of the human
resources and other development resources from
the outside. In this context, it is necessary to
consider what we should do to collaborate with
parties outside the project. One desirable approach
may be to develop a license that can facilitate
collaboration with outside parties. This view is
heard from the field of economics as well. In
conjunction with studies on NIH, it is now
impacting discussions on various issues, including
the open licensing strategy and standardization
strategy.

Ⅳ Characteristics and Classification

of Open Source Software Licenses

Open source software can be protected by a
copyright. In general, in order for a third party to

● 3 ●
IIP Bulletin 2011 Vol.20

use such software, a copyright license is granted.
The copyright holder, who is the producer of the
software in most cases, grants permission for
reusing the software under certain conditions of
license. The current common practice is to choose
the one that best suits the relevant license from
among some typical, widely-used samples of open
source software license agreements.

There are several types of licenses used for
open source software. In most cases, they satisfy
or at least do not violate the criteria specified as
the Open Source Definition. GNU General Public
License (GPL)9 is a highly notable type of open
source software license. This license is applied to
Linux Kernel. Berkeley Software Distribution
(BSD) License and Apache License are also
frequently used. Among these major types of
licenses, GPL is actually used for 50 to 60% of all
open source software licenses, BSD License for
10 to 20%, and Apache License for 10 to 20%.
The rate of use of Apache License is recently
showing high growth.

These open source software licenses are also
drawing attention from the software industry and
those actually engaged in software development,
and they are also considered to be worthy of note
from a legal perspective. Since the beginning of
the year 2000, studies on open source software
licenses have progressed in various fields. Having
reviewed earlier studies, I found that the former
scholars and legal professionals were interested
especially in copyright licenses. Considering that
software can be protected by copyright, this may
be a matter-of-course phenomenon. The object
that attracted the most interest was the feature of
copyleft. Copyleft is a coined word that means the
reverse of copyright. It refers to the concept of
reciprocity, that is, if any modification is made to
the software covered by an open source software
license, the licensee who has made such
modification must open the relevant source code.
This rule is generally considered to be a feature
of GNU GPL, but actually, similar conditions are
included in other licenses. Lerner & Tirole (2002)
conducted a leading study that focused on this
feature.

Ⅴ Open Source Software and

Software Patent

1 Treatment of software patents in open

source software licenses

An open source software license is exactly an
approach of providing legal assurance that anyone

can freely use software, on the basis of a
copyright. On the other hand, a patent is a legal
framework of granting an exclusive right to the
inventor, or in other words, preventing anyone
from freely using the invention, thereby returning
the benefit to the inventor so as to increase the
incentive to disclose inventions. Thus, open
source and patents are incompatible by nature.
This problem has been too serious to ignore, as
open source software became significantly
valuable in economic terms and profit-making
enterprises with large patent portfolios started to
take part in the development of open source
software.

What makes the problem more complicated is
that a copyright and a patent right, both means of
legal protection for software, are completely
independent from each other. Even in the case of
open source software covered by a copyright
license, if it involves a technology protected by a
software patent, it may not be made available to
everyone to use freely without obtaining a
separate license regarding the patent.

In the context of open source, the most
popular existing way to deal with the issue of a
software patent is to include Patent Clause
concerning the treatment of a patent in the
conditions of an open source software license.

Among many types of open source software
licenses, many are not very recommended, and
only seven types are in relatively frequent use.
The BSD License is the only one that does not
include any Patent Clause, whereas the Apache
License, GPL, Lesser General Public License
(LGPL), Common Development and Distribution
License (CDDL), Mozilla Public License (MPL),
and Artistic License include Patent Clauses (e.g.
Section 11 of GPL and Section 13 of Artistic
License).

2 Validity of Patent Clauses

We should first question whether or not
those Patent Clauses can be regarded as being
legally valid. While there is no precedent case
which directly addressed the dispute over Patent
Clauses, the legal validity of an open source
license was disputed squarely before court in
Jacobsen v. Katzer.

Professor Robert Jacobsen of the University
of California, Berkeley is one of the major
members of the team that developed open source
software, the Java Model Railroad Interface
(JMRI). JMRI was opened under the Artistic
License.

● 4 ●
IIP Bulletin 2011 Vol.20

Meanwhile, Matthew Katzer, who ran a
company called KAMIND Associates Inc. in the
State of Oregon, copied part of the source code of
JMRI and incorporated it in his company’s
products, without complying with the clauses
presented by Jacobsen as the conditions for
granting a license.

Jacobsen brought a case before the U.S.
District Court for the Northern District of
California against Katzer for non-fulfillment of the
agreement and also for copyright infringement,
with a motion for a preliminary injunction. In
2007, the District Court dismissed Jacobsen’s
motion for a preliminary injunction for copyright
infringement, holding that the relevant conditions
of the license do not limit the scope of the license.
Dissatisfied with this, Jacobsen appealed to the
U.S. Court of Appeals for the Federal Circuit
(CAFC).

The CAFC acknowledged that the open
source license is enforceable, and determined
that Jacobsen’s license conditions are set as those
for granting a license regarding the copyright for
the software, and that any user of the software
who fails to comply with these conditions shall be
deemed to go beyond the scope of use permitted
under the license and such use constitutes
copyright infringement. In conclusion, the CAFC
remanded the case to the District Court to
examine Jacobsen’s likelihood of success on the
merits and irreparable harm.10

In the judgment of the remanded case, the
District Court dismissed Jacobsen’s motion for a
preliminary injunction again, on the grounds that
Jacobsen did not demonstrate that he would
sustain any irreparable harm unless the alleged
infringement were stopped.

This case finally came to an end through a
settlement between the parties in 2010. From
this precedent case, I drew a view that the CAFC
took the stance to confirm the legal validity of an
open source software license, and presumably
would also take the same stance for Patent
Clauses.

3 Two Major Types of Patent Clauses

Open source software licenses often include

Patent Clauses. Apache License 2.0, Section 3,
Grant of Patent License, may be a typical example
of such clause, and can be divided into the
following two parts.

(1) Automatic licensing
The first sentence of the Patent Clause,

Section 3, Grant of Patent License can be
paraphrased as stating that the copyright holder
for the software covered by Apache License 2.0 or
any part thereof (Work or Contribution) shall
grant to the licensee (You) a perpetual, worldwide,
non-exclusive, no-charge, royalty-free,
irrevocable patent license for the use (including
modification and sale) of the software.

(2) Patent Retaliation

Patent Retaliation is a mechanism that has
been seen in many open source software licenses
these days.

The second sentence of the Patent Clause,

Section 3, Grant of Patent License, provides, if
the licensee institutes patent litigation, alleging
that the software covered by Apache License 2.0
or any part thereof (Work or Contribution)
constitutes direct or contributory patent
infringement, any patent licenses granted to such
licensee under Apache License 2.0 shall be put to
an end. After that, the licensee might be sued by
the licenser in a patent infringement lawsuit.
Similar clauses are adopted in GPL v. 3 and other
types of open source software licenses.

4 Discussions on Patent Clauses

An implied license is one of the topics taken

up for discussions on Patent Clauses. This may
also be regarded as an issue relating to legal
estoppel. The origin of the concept of automatic
licensing is implied license. Open source software,
by its nature, must allow the licensee’s free use,
even where the licenser has not explicitly
permitted, he/she shall not be allowed to
subsequently deny its validity, which has been in
effect permitted. Inhibiting such free use by way
of a patent license constitutes legal estoppel.

GPL v2 does not include any such explicit
permission as an automatic license, and adopts an
implied license. Although various opinions are
heard on this point, it is generally understood that
an implied license is valid unless the original
software is modified. If the licenser transfers the
software to another person, without modification,
he/she would not be allowed to subsequently
apply any additional restrictions. However, it is
very controversial whether or not an implied
license is valid even when the licensee makes a
modification to the software.

● 5 ●
IIP Bulletin 2011 Vol.20

An open source software license is generally
defined as a software license that complied with
the Open Source Definition. There is an argument
that the compliance with the Open Source
Definition is, in effect, the basis for asserting the
validity of an implied license for all licenses. With
regard to the BSD License, which does not
involve patents, it is also argued that as long as it
complies with the Open Source Definition, it
could be deemed to grant an implied license.
Items 6 and 7 of the Open Source Definition
provide for the prohibition of discrimination by
field and prohibition of distribution of rights.11
Some argue that, under these provisions, putting
restrictions on rights depending on the purpose of
use or the licensee would be contrary to the Open
Source Definition, and that an open source
software license subject to such restrictions could
never be deemed to be in compliance with the
Open Source Definition.

There was controversy over the MPEG
eXtensible Middleware (MXM) License’s
compliance with the Open Source Definition. The
point at issue was what types of license should be
applied when implementing technical standards
which contain patents by means of open source
software. The MPEG Working Group basically
adopted the MPL but removed the Patent Clauses,
in an attempt to design a license which requires
the licensee to acquire patent licenses separately.

Another point is that there is considerable
difference between licenses. For instance, under
the Artistic License, if the licensee institutes
patent litigation with regard to the software or
any derivative software, the license shall
terminate.12 This clause has a broad scope. On
the other hand, the Apache License and GPL v3
limit the scope of patent claims in some ways.

A possible future approach is to directly
control the use of software via patent licenses.
The licensing scheme for WebM, an open video
format for the web by Google, may be a notable
example. This new format involves another web
video standard, H.264, which cannot be made
open solely at Google’s discretion. As the patent
pool developed by MPEG LA contains various
patents relating to WebM, Google properly ought
to participate in MPEG LA. However, in that case,
WebM might not be able to meet the conditions of
open source software, i.e. non-exclusive and
no-charge. Google seems to have devised the idea
of licensing WebM in order to clear this problem.

A remarkable feature of the license of WebM
is that Google intends to provide a copyright
license and patent licenses in one package, while

completely separating these two categories of
licenses. More specifically, Google’s plan is to
apply the BSD License for the source code, and to
grant patent licenses for the implementation of
JavaScriptV8, which it has developed, under the
scheme of Additional IP Rights Grant. It is of
great interest that Google is to grant a license in
the form of a Specification License for WebM
even when a third party has re-implemented this
technical standard independently.

As I see it, Google aims to avoid forcing the
WebM licensees to enter into license agreements
with MPEG LA to use H.264, and to this end, on
the presupposition of the existence of YouTube, a
widely spread web service, it makes a kind of
threat to a third party that if the party sues a
licensee for patent infringement with regard to
WebM, Google would terminate the various
licenses it has granted to the party, thereby trying
to maintain an open source software license.

Ⅵ Trademarks under Open Source

Software Licenses

In the context of open source, controlling the

use of software via trademarks is a relatively new
idea.

Like a patent license, a trademark license for
open source software is basically regarded as a
control means other than a copyright license. It is
used directly for the purpose of maintaining some
sort of quality of software.

For instance, with regard to Linux Kernel, a
representative example of open source software,
rights for “Linux” or any other similar trademark
had not been obtained by any person in any
country until 1994. On August 15, 1994, William
R. Della Croce, Jr., an attorney living in Boston,
filed a trademark application for “LINUX” in the
field of computer operating systems (Serial No.
74560867), and this trademark was registered on
September 5, 1995 (Registration No. 1916230).13
This person had no relation with Linux. After that,
he attempted to collect royalties (10% of the
product sales) from Red Hat and other affiliated
companies of Linux. In 1996, Linus Torvalds, who
developed Linux, with other persons in the
industry, brought an action to claim invalidation of
the trademark registration of “LINUX.” In 1997,
this case was resolved by a settlement wherein
Della Croce, Jr. should assign the ownership of
the trademark to Torvalds. Since this case,
Torvalds has held the ownership for Linux-related
trademarks registered in the United States,
Germany, EU, and Japan, while the Linux

● 6 ●
IIP Bulletin 2011 Vol.20

Trademark Institute (LMI), set up within the
Linux Foundation (a consortium for the promotion
of Linux), has actually performed the
management of these trademarks. The LMI’s
policy is to grant no-charge, permanent, and
worldwide sub-licenses for Linux-related
trademarks, on condition that the licensees
should avoid using the trademarks in a manner
that could jeopardize Torvalds’ trademark rights,
and should indicate those trademarks properly.

The Linux trademark case can be referred to
as the endeavor to realize open source via a
trademark. Meanwhile, a trademark is also used
in order to put some restrictions and exert
influence on open source development.

In the case of Firefox, a famous open source
web browser, a software license is granted in the
form of an open source software license, Mozilla
Public License (MPL). The Mozilla Foundation,
which is in charge of the development of the
software, has laid down the Mozilla Trademark
Policy for Distribution Partners. According to this
policy, distributors may use the name, logo or any
other artwork of “Mozilla Firefox” only if they
distribute unaltered official binaries provided by
the Mozilla Foundation. The official purpose of
this restriction is to maintain and improve the
brand image of Mozilla by quality assurance given
by the Mozilla Foundation itself. At the same time,
the Mozilla Foundation receives as much as 60
million dollars from Google in exchange for
designating Google as the default search engine of
Firefox, and for this reason, the foundation
presumably wishes to keep part of the official
binaries of Firefox unchanged, while providing it
as an open source web browser.

A Linux distributor, Debian, declared that it
would not accept Mozilla’s trademark policy, and
has decided to use “Iceweasel,” instead of
“Firefox,” in logos, artworks, filenames, and any
other kinds of names to be attached to its own,
modified versions of Firefox that it distributes.

This is not unusual in the context of handling
trademarks. However, I find it strange that the
Mozilla Foundation allows distributors to modify
Firefox but restricts them from using the name
“Firefox,” which seems to be contrary to the
concept of open source. Here is the limit of
Mozilla’s trademark policy. While Debian’s case
was settled by changing the name, some cases
have been brought to court in trademark litigation.
Oracle, which bought Sun Microsystems, sued
Google, alleging that Google directly copied Java
code and used it in its mobile phone platform,
Android. In this noteworthy case, the parties

disputed various issues, including those
concerning a copyright, patents, and trademarks.
Oracle uses the “Java” trademark as a means to
control the use of Java technology. Google wished
to use Java in Android, but faced difficulties in
implementing Oracle’s Java Platform, Micro
Edition (JavaME), so it developed another Java
implementation called Dalvik. However, Google is
not allowed to call Dalvik a Java implementation
because it bypassed the Java Community Process
(JCP), which Oracle requires for Java processing.

Ⅶ Other Measures for Open Source

In recent years, movements toward protecting

the development of open source software by
systems or organizations set up outside the
framework of licenses are taking place. In such
situation, collaborative licensing is being adopted
as a research and development model. When
several parties work together to develop
something, they would have to go through too
many steps if they were to license the relevant
copyrights, patents, and trademarks, one by one,
to one another. The collaborative licensing model
has been developed to make this process more
simple and easy. In this section, collaborative
licensing is roughly divided into two types:
licensing based on weak collaboration and
licensing based on strong collaboration.

1 Patent Pools

A patent pool is an example of weak

collaboration. In principle, participants in a patent
pool are supposed to contribute their patents
voluntarily. They may select only some of their
patents that are less important and contribute
them to the patent pool.

Patent pools have been diffused as a licensing
scheme in the fields of home appliances and
software. They have been introduced in the
context of open source only relatively recently.

The Patent Commons Project is a
well-known example. It was launched by the Open
Source Development Labs (OSDL) on November
15, 2005, and it is currently being managed by the
Linux Foundation, which was established through
reorganization of the OSDL.

2 Defensive Patent Licensing

A specific example of licensing based on

strong collaboration is Defensive Patent License
(DPL).

● 7 ●
IIP Bulletin 2011 Vol.20

DPL has recently been proposed by Jason
Schultz and Jennifer Urban, both of the UC
Berkeley. It is a patent license in which the
concept of GPL is incorporated. It is designed for
directly controlling the use of software using
patent licenses, rather than indirect control by
way of a copyright license.

3 Contributor License Agreement

When an open source software user has

modified the existing source code, etc., he/she
has two options for opening the modified version.
One is to open only the portion that the user has
modified, 14 and the other is to contribute the
modified portion to the entity that takes the lead
in the development of the software (e.g. the
development project), and have it merged into the
existing source code (the code base of the main
line) under the management of the entity. More
specifically, when a Linux Kernel user has
developed a new device driver, he/she can simply
open the source code of the device driver on
his/her own website or by other means, or may
contact the Linux Kernel Mailing List, etc. and
have the device driver accepted as part of Linux
Kernel standard distributions, with the consent of
Linus Torvalds and the major development staff.15

Where the latter option was chosen, how to
deal with a copyright for the contributed portion
often becomes a problem. If the development
project does not designate any particular
condition upon merging the contributed code into
the existing source code, the copyright for such
contributed code remains in the hand of the
person who developed that code. For instance,
there is no particular condition set for the merge
into Linux Kernel (except for the requirement of
the quality of codes), and as a result, Linux
Kernel can be regarded as a work under joint
authorship owned together with a huge number of
copyright holders. Theoretically, when making a
decision that could affect the entire work or Linux
Kernel in whole (e.g. a change to the license), it
is necessary to confirm the intention of all of
these copyright holders. Furthermore, someone
might later come forward to claim to be the true
author of the merged code, alleging that the
development project has merged his/her work
into the existing source code without his/her
consent.

To avoid such situation, some development
projects require contributors of codes to submit a
copyright assignment.

For such process of copyright assignment, a
contributor license agreement (CLA) has been
becoming popular in recent years.

Under this new type of agreement, the
contributor of a code who originally holds a
copyright permits the development entity to use
the contributed code without restrictions, instead
of assigning the copyright to the entity.

Ⅷ Conclusion

Those who have read my discussions on the

treatment of patents and trademarks in open
source software licenses, might pose a question
as to why open source software development
projects are trying so hard to restrict patents.
While carrying out this study, I went to Europe
and talked with various persons engaged in this
field, and found that engineers originally had
deep-rooted opposition to software patents, which
has nothing to do with open source. The great
success of open source initiatives launched by
those opposed to software patents somewhat
encourages those engineers. It is revealed that
the raison d’être of software patents has been
shaken to a great extent in recent years.

It is also revealed that in the fields of
economics and business management, patents
have been justified by few scholars.
Representative anti-patent studies are those by
Boldrin & Levine (2008) and Bessen & Meurer
(2008). The latter study, as its title “Patent
Failure” clearly signifies, denies the patent
system itself.

A typical example frequently mentioned in
criticizing patents is the development of the
steam engine by James Watt. Watt obtained Patent
No. 913 and had adequate funds. Patent
supporters argue that the research and
development of the steam engine required large
capital, and a patent was indispensable to recoup
the huge initial investment. Contrary to this
argument, Boldrin & Levine state that, after
obtaining the patent, Watt became enthusiastic
about collecting money from users of the patented
technology; he did not himself keep producing
steam engines until the expiration of the patent.
Viewed from society as a whole, Watt’s patent did
nothing but impede technological development.
This is a criticism against patents in general.
Studies in favor of software patents are far fewer.

The Japan Patent Office is said to be
examining applications for software patents, in
particular business model patents, rather strictly,

● 8 ●
IIP Bulletin 2011 Vol.20

in terms of the disclosure requirement and the
enablement requirement.

It should be understood that the underlying
tone about the treatment of patents in open
source software licenses has always been
negative, because of the anti-software patent
concept that has affected open source software
licenses. It can be considered to be the approach
to solve problems with software patents by using
patent rights as leverage, in a similar manner that
copyleft clauses have substantially incapacitated
copyrights by using copyrights as leverage.

As the principle of open source is to grant a
license without charge equally to anyone, it would
be difficult to reconcile this principle with the
nature of a patent as an exclusive right. The
treatment of patents in open source software
licenses represents the efforts to ensure
coherence between the two somehow.

The same applies to the treatment of
trademarks, as a means to effectively control the
use of software while maintaining the basic
features of an open source license. Those who
lack an understanding on these points might be
involved in serious trouble when they intend to
license their software or use open source
software especially for profit-making purposes. I
hope this study can help promote better
understanding.

1 DIAMOND v. DIEHR, 450 U.S. 175 (1981)
2 The proposed directive on the patentability of computer

implemented inventions, Commission proposal
COM(2002) 92

3 For Open Source Initiative, see the official website:
http://www.opensource.org/osd.html

4 For Open Source Definition, see the webpage on the
Open Source Initiative website:
http://opensource.org/docs/osd

5 See the Open Source Initiative website:
http://opensource.org/history

6 See the Creative Commons website:
http://creativecommons.org/

7 http://freedomdefined.org/OSHW
8 See the Institute of Intellectual Property website:

http://peertopatent.jp/
9 The original text of GNU GPLv3 is available at GNU

Website http://www.gnu.org/licenses/gpl-3.0.html. An
unofficial Japanese translation of the original text is
available at the Website of the:Information-Technology
Promotion Agency (IPA)
http://ossipedia.ipa.go.jp/legalinfo/gpl-3.0J.html.

10 The text of the CAFC judgment on this case is
available at:
http://www.cafc.uscourts.gov/images/stories/opinions-or
ders/08-1001.pdf

11 The Open Source Definition
6. No Discrimination Against Fields of Endeavor

The license must not restrict anyone from making use of

the program in a specific field of endeavor. For example,
it may not restrict the program from being used in a
business, or from being used for genetic research.

7. Distribution of License
The rights attached to the program must apply to all to
whom the program is redistributed without the need for
execution of an additional license by those parties.

12 Artistic License 2.0
(13) This license includes the non-exclusive, worldwide,
free-of-charge patent license to make, have made, use,
offer to sell, sell, import and otherwise transfer the
Package with respect to any patent claims licensable by
the Copyright Holder that are necessarily infringed by
the Package. If you institute patent litigation (including
a cross-claim or counterclaim) against any party alleging
that the Package constitutes direct or contributory
patent infringement, then this Artistic License to you
shall terminate on the date that such litigation is filed.

13 USPTO Assignments on the Web
(http://assignments.uspto.gov/assignments/q?db=tm&r
no=1916230), as of March 25, 2011.

14 In this case, the user him/herself adds the modified
portion to the main body (usually by applying patches
and building the code).

15 TOMOYO Linux, developed in Japan, was merged in
the main body of Linux Kernel in 2009.

